RHIC PROJECT

Brookhaven National Laboratory

Effects of Random b_1 Errors in the High Beta Quadrupoles

G. Parzen

Effects of Random b_1 Errors in the High Beta Quadrupoles

G. Parzen

Brookhaven National Laboratory February 1992

1. Introduction

The random b_1 error in the high beta quadrupoles in the insertions can produce large distortions¹ in the beta functions, β_x , β_y . A maximum shift of the beta functions of about 90% may occur for a lattice with 6 $\beta^* = 2$ insertions. The b_1 error in the high beta quads contribute about 85% of this beta function shift. If the b_1 errors in the high beta quads are corrected locally, then a maximum beta function shift of about 20% will remain due to the b_1 errors in the dipoles and arc quadrupoles.

2. $\Delta \beta / \beta$ Results

The largest source of the b_1 error in the high beta quadrupoles is the random error in the effective length. This was assumed to be $\Delta L/L = 2 \times 10^{-3}$ rms.

Table 1 shows the rms contribution to $\Delta \beta_x/\beta_x$ due to various magnets in the lattice. These results are analytical results. Computer simulation have been done, and agree with the analytical results. The results are shown for two lattices; one with 6 $\beta^* = 6$ insertions and one with 6 $\beta^* = 2$ insertions. For computing the 90% probability maximum $\Delta \beta_x/\beta_x$, from the rms $\Delta \beta/\beta$

$$(\Delta \beta_x/\beta_x)_{\text{max}} \cong 3 \ (\Delta \beta_x/\beta_x)_{\text{rms}}$$

was used. Table 1 shows the breakdown for $\Delta \beta_x/\beta_x$. The results for $\Delta \beta_y/\beta_y$ are similar, except that certain magnets like Q3 and Q2, and QF and QD interchange roles.

¹ G. Parzen, Linear Random Quadrupole Effects, AD/RHIC-AP-71, (1988).

Table 1 shows that a maximum $\Delta \beta_x/\beta_x$ of 90% may occur for the $\beta^* = 2$ lattice. If the b_1 error in the high beta quadrupoles is corrected locally, then a maximum $\Delta \beta_x/\beta_x$ will remain of about $\Delta \beta_x/\beta_x \simeq 20\%$ due to the b_1 errors in the quadrupoles and dipoles. The maximum $\Delta \beta_x/\beta_x \simeq 20\%$ result came from simulation studies, and is somewhat higher than that suggested by Table 1.

Table 1: Contributions to $(\Delta \beta_x/\beta_x)_{\text{rms}}$ due to the b_1 errors in various magnets for two lattices.

	$(\Delta eta_x/eta_x)_{ m rms}$	
	$\beta^* = 6$	$\beta^* = 2$
В	0.036	0.035
QF	0.036	0.036
QD	0.007	0.007
Q3I	0.032	0.109
Q2I	0.026	0.079
Q1I	0.023	0.063
Q10	0.024	0.067
Q20	0.080	0.227
Q30	0.014	0.039
Total		
$rac{\Deltaeta}{eta}_{ ext{rms}}$	0.116	0.29
$rac{\Delta eta}{eta}_{ m max}$	0.36	0.90